ylzzcom永利总站线路检测
学术动态

清华大学环境学院李淼课题组开发磷掺杂单原子钴催化剂 实现水中硝酸盐污染高效还原去除与能源利用

作者:  发布日期:2022-07-30  浏览:

  清华新闻网7月18日电 近日,清华大学环境学院李淼副教授团队在水中硝酸盐污染物高效还原去除与能源利用方面取得新进展,开发出了一种磷掺杂单原子钴催化剂,实现了对水中硝酸盐污染物的高效还原去除,提高了硝酸盐转化为氨的产率。

  全球活性氮增加引起的氮循环失衡使硝酸盐成为水中最普遍的污染物之一。硝酸盐污染威胁着生态安全和人类健康。通过硝酸盐还原方式合成氨,不仅有助于水中硝态氮污染物的去除,而且有助于缓解社会对氨能源的需求,减少污染,降低能耗。电化学反应过程对条件要求适中,易于运行并且高效,可将硝酸盐直接转化为氨。但通常在硝酸盐的电化学还原过程中,在纳米及更大尺寸电极的活性位点上易于发生氮-氮偶联反应生成氮气,制约氨的高效生成。因此,开发具有高活性、低成本和高选择性优势的电极材料是该领域研究的核心之一。李淼团队针对钴(Co)金属电极活性差、易钝化导致难以实用的瓶颈,通过缺陷碳的稳定固化作用,开发了一种磷(P)掺杂的单原子钴催化剂材料(如图1所示),可有效避免偶联反应发生,使最终产物具有更高的氨选择性和还原活性。这种磷掺杂单原子钴催化剂具有更高的硝酸盐还原去除性能,以其作为催化剂的最高氨生成法拉第效率为92.0%、最高氨产率为433.3μgNH4+·h−1·cm−2

  

  图1 单原子催化剂结构形貌分析结果

  研究团队采用自然界极少的15NO3作为氮源,以同位素标记法进一步证明了氨生成的唯一氮来源为硝酸盐。利用1H核磁共振(NMR)仪对产生的氨进行检测,14NH4+15NH4+的核磁谱图分别具有典型的三峰和双峰结构。研究采用多种实验分析手段对载体结构进行了分析。结果表明,磷的掺杂进一步提高了碳氮载体的缺陷程度,提供了更多的固定位点负载单原子钴,并且缺陷位点会对相邻金属钴活性位点的电子结构和性能产生影响,提高了电极导电性。

  

  图2 电极性能结果

  研究团队根据密度泛函理论计算,创新强化污染物净化的单原子尺度结构调控理论与方法,从分子水平上对硝酸根在模型单原子钴催化剂活性位点的转化反应机理进行了探究,分析反应路径和能量变化。结果表明,硝酸根在单原子位点上逐步发生脱氧加氢的基元反应,N*物种可以在外部提供能量时进一步偶联形成氮气,也可以自发与氢逐步反应形成铵盐。磷掺杂后形成的缺陷位点可以促进临近CoP1N3位点对硝酸盐的催化转化,硝酸盐还原过程发生8电子数转移生成铵盐。此外,研究还发现,金属活性位点临近的缺陷结构有助于进一步提高单原子催化剂活性,在理论上为设计高活性位点的催化剂提供指导并揭示硝酸反应转化和产物分布规律。

  

  图3 反应机理示意图

  该研究成果于7月12日以《高法拉第效率钴单原子催化剂显著促进氨生成》(Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies)为题在线发表在《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America )上。论文第一作者为环境学院博士后李佳澄,论文通讯作者为环境学院李淼副教授,环境学院刘翔教授等人对实验提供了重要指导和帮助。研究项目得到国家自然科学基金面上项目和重点研发计划的资助。

  论文链接:

  https://doi.org/10.1073/pnas.2123450119

  供稿:环境学院

  题图设计:金娅辰

  编辑:覃霞

  审核:曲田

  来源:https://www.tsinghua.edu.cn/info/1175/96875.htm

Baidu
sogou